Kurssit

Insoft on palvellut IT-yhteisÜä Ciscon virallisella koulutustarjonnalla vuodesta 2010. Tältä sivulta lÜydät kaikki olennaiset tiedot Ciscon koulutuksesta.

Katso lisää

Cisco Learning Credits

Cisco opintopisteet (CLC) ovat suoraan Ciscon kanssa lunastettuja prepaid-koulutusseteleitä, jotka helpottavat menestyksen suunnittelua ostaessasi Ciscon tuotteita ja palveluita.

Katso lisää

Cisco Continuing Education

Cisco täydennyskoulutusohjelma tarjoaa kaikille aktiivisille sertifioinnin haltijoille joustavia vaihtoehtoja uudelleensertifiointiin suorittamalla erilaisia kelvollisia koulutuskohteita.

Katso lisää

Cisco Digital Learning

Sertifioidut tyÜntekijät ovat ARVOSTETTUJA omaisuuseriä. Tutustu Ciscon valtuutettuun digitaaliseen oppimiskirjastoon ja kouluta itseäsi tallennettujen istuntojen avulla.

Katso lisää

Cisco Business Enablement

Cisco Business Enablement Partner Program keskittyy Cisco Channel Partnersin ja asiakkaiden liiketoimintataitojen terävÜittämiseen.

Katso lisää

Kurssit

Insoft Services on auktorisoitu Fortinet-kouluttaja useassa Euroopan maassa.

Katso lisää

ATC Status

Tarkista ATC-tilamme valituissa Euroopan maissa.

Katso lisää

Kurssit

Insoft Services tarjoaa Microsoftille EMEAR-koulutusta. Tarjoamme Microsoftin teknistä koulutusta ja sertifiointikursseja, joita johtavat maailmanluokan ohjaajat.

Katso lisää

Kurssit

Extreme Networks Technical Trainingin kehitys tarjoaa kattavan progressiivisen polun associate-akkreditoinnista ammatilliseen akkreditointiin.

Katso lisää

ATP-akkreditointi

Valtuutettuna koulutuskumppanina (ATP) Insoft Services varmistaa, että saat korkeimman saatavilla olevan koulutuksen.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Missiomme: Tarjota asiantunteva joukko moderneja ja huippuluokan verkkoautomaatiotaitoja markkinoille asiantuntijapalvelujen avulla.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Autamme organisaatioita ottamaan käyttÜÜn Software-Defined Networking (SDN) -ratkaisuja, kuten Cisco DNA:ta.Lisäksi tiimillämme on laaja kokemus Cisco DNA Centerin integroinnista kolmannen osapuolen järjestelmiin.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

Tiimimme

Koulutusvalikoimaamme kuuluu laaja valikoima IT-koulutusta IP-palveluntarjoajilta, mukaan lukien Cisco, Extreme Networks, Fortinet, Microsoft, muutamia mainitakseni, EMEA-alueella.

Katso lisää

NPL – Natural Language Processing Fundamentals

Ota yhteyttä

Voit olla meihin yhteydessä ja tiedustella koulutuksistamme täydentämällä yhteystietosi ja koulutuksen nimen oheen.

Tietosuojalauseke ja yksityisyys

Suostun vastaanottamaan sähköpostiviestejä ja/tai puheluita Insoft Services Oy: n tuotteista ja palveluista.
Hyväksyn, että tietojani kerätään ja käsitellään Insoft Servicesin tietosuojakäytännössä kuvatulla tavalla.

Close

NPL – Natural Language Processing Fundamentals

VARAA NYT
Kesto
3 päivää
Toimitus
(Online ja paikan päällä)
Hinta
Hinta pyydettäessä

This comprehensive Natural Language Processing (NPL) Fundamentals training course will show you how to effectively use Python libraries and NLP concepts to solve various problems. This is a three-day course that starts with basics and goes on to explain various NLP tools and techniques that equip you with all that you need to solve common business problems for processing text.

In this NPL training course, you’ll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modelling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you’ll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you’ll understand how to apply NLP techniques to answer questions as can be used in chatbots.

By the end of this course, you’ll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or genesis for performing sentiment analysis. This NPL training course will easily equip you with the knowledge you need to build applications that interpret human language.

 

 

See other courses available

Lesson 1: Introduction to NLP

  • What is natural language processing (NLP)?
  • Types of natural language processing tasks
  • Structuring a natural language processing project

Lesson 2: Extraction Methods from Unstructured Text

  • Tokenization methods
  • Term frequency observations
  • Bag-of-Words and TF-IDF

Lesson 3: Building a Simple Classifier

  • Basic theoretical coverage and sample code of Supervised and Unsupervised
  • Classifiers vs. regressors
  • Sampling and splitting data for training algorithms
  • Evaluating the performance of a model
  • Use of Pandas and scikit-learn

Lesson 4: Collecting Text Data

  • Retrieve and process web page data using urllib, bs4
  • Handle various types of data such as JSON, XML
  • Retrieve real-time data using API provided by the website

Lesson 5: Topic Modeling

  • Loading and preprocessing documents into a noted course
  • Training an LDA model to detect the topics in the document
  • Visually represent the topics found in a set of documents

Lesson 6: Text Summarization and Text Generation

  • Summarizing document using word frequency
  • Generating random text using the Markov chain
  • Compare the results between recent methods

Lesson 7: Vector Representation

  • Converting words to word vectors
  • Perform math-like operations on word vectors e.g. king – man = queen
  • Converting documents to document vectors.
  • Using document vectors to measure the similarity between documents

Lesson 8: Sentiment Analysis

  • Load a labelled dataset of movie reviews
  • Use word vectors to represent the words in the movie review
  • Train a simple model to predict whether the movie review is positive or negative

Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It’ll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Hardware:

This NPL training course will require a computer system for the instructor and one for each student. The minimum hardware requirements are as follows:

  • Processor: Dual Core or better
  • Memory: 4 GB RAM
  • Hard disk: 10 GB
  • Internet connection

 

Software:

  • Operating system: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later
  • Browser: Google Chrome or Mozilla Firefox
  • Conda
  • Jupyterlab
  • Python 3.x

This comprehensive Natural Language Processing (NPL) Fundamentals training course will show you how to effectively use Python libraries and NLP concepts to solve various problems. This is a three-day course that starts with basics and goes on to explain various NLP tools and techniques that equip you with all that you need to solve common business problems for processing text.

In this NPL training course, you’ll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modelling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you’ll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you’ll understand how to apply NLP techniques to answer questions as can be used in chatbots.

By the end of this course, you’ll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or genesis for performing sentiment analysis. This NPL training course will easily equip you with the knowledge you need to build applications that interpret human language.

 

 

See other courses available

Lesson 1: Introduction to NLP

  • What is natural language processing (NLP)?
  • Types of natural language processing tasks
  • Structuring a natural language processing project

Lesson 2: Extraction Methods from Unstructured Text

  • Tokenization methods
  • Term frequency observations
  • Bag-of-Words and TF-IDF

Lesson 3: Building a Simple Classifier

  • Basic theoretical coverage and sample code of Supervised and Unsupervised
  • Classifiers vs. regressors
  • Sampling and splitting data for training algorithms
  • Evaluating the performance of a model
  • Use of Pandas and scikit-learn

Lesson 4: Collecting Text Data

  • Retrieve and process web page data using urllib, bs4
  • Handle various types of data such as JSON, XML
  • Retrieve real-time data using API provided by the website

Lesson 5: Topic Modeling

  • Loading and preprocessing documents into a noted course
  • Training an LDA model to detect the topics in the document
  • Visually represent the topics found in a set of documents

Lesson 6: Text Summarization and Text Generation

  • Summarizing document using word frequency
  • Generating random text using the Markov chain
  • Compare the results between recent methods

Lesson 7: Vector Representation

  • Converting words to word vectors
  • Perform math-like operations on word vectors e.g. king – man = queen
  • Converting documents to document vectors.
  • Using document vectors to measure the similarity between documents

Lesson 8: Sentiment Analysis

  • Load a labelled dataset of movie reviews
  • Use word vectors to represent the words in the movie review
  • Train a simple model to predict whether the movie review is positive or negative

Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It’ll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Hardware:

This NPL training course will require a computer system for the instructor and one for each student. The minimum hardware requirements are as follows:

  • Processor: Dual Core or better
  • Memory: 4 GB RAM
  • Hard disk: 10 GB
  • Internet connection

 

Software:

  • Operating system: Windows 7 SP1 32/64-bit, Windows 8.1 32/64-bit, Windows 10 32/64-bit, Ubuntu 14.04 or later, or macOS Sierra or later
  • Browser: Google Chrome or Mozilla Firefox
  • Conda
  • Jupyterlab
  • Python 3.x