Kurssit

Insoft on palvellut IT-yhteisÜä Ciscon virallisella koulutustarjonnalla vuodesta 2010. Tältä sivulta lÜydät kaikki olennaiset tiedot Ciscon koulutuksesta.

Katso lisää

Cisco Learning Credits

Cisco opintopisteet (CLC) ovat suoraan Ciscon kanssa lunastettuja prepaid-koulutusseteleitä, jotka helpottavat menestyksen suunnittelua ostaessasi Ciscon tuotteita ja palveluita.

Katso lisää

Cisco Continuing Education

Cisco täydennyskoulutusohjelma tarjoaa kaikille aktiivisille sertifioinnin haltijoille joustavia vaihtoehtoja uudelleensertifiointiin suorittamalla erilaisia kelvollisia koulutuskohteita.

Katso lisää

Cisco Digital Learning

Sertifioidut tyÜntekijät ovat ARVOSTETTUJA omaisuuseriä. Tutustu Ciscon valtuutettuun digitaaliseen oppimiskirjastoon ja kouluta itseäsi tallennettujen istuntojen avulla.

Katso lisää

Cisco Business Enablement

Cisco Business Enablement Partner Program keskittyy Cisco Channel Partnersin ja asiakkaiden liiketoimintataitojen terävÜittämiseen.

Katso lisää

Kurssit

Insoft Services on auktorisoitu Fortinet-kouluttaja useassa Euroopan maassa.

Katso lisää

ATC Status

Tarkista ATC-tilamme valituissa Euroopan maissa.

Katso lisää

Kurssit

Insoft Services tarjoaa Microsoftille EMEAR-koulutusta. Tarjoamme Microsoftin teknistä koulutusta ja sertifiointikursseja, joita johtavat maailmanluokan ohjaajat.

Katso lisää

Kurssit

Extreme Networks Technical Trainingin kehitys tarjoaa kattavan progressiivisen polun associate-akkreditoinnista ammatilliseen akkreditointiin.

Katso lisää

ATP-akkreditointi

Valtuutettuna koulutuskumppanina (ATP) Insoft Services varmistaa, että saat korkeimman saatavilla olevan koulutuksen.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Missiomme: Tarjota asiantunteva joukko moderneja ja huippuluokan verkkoautomaatiotaitoja markkinoille asiantuntijapalvelujen avulla.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

 

Autamme organisaatioita ottamaan käyttÜÜn Software-Defined Networking (SDN) -ratkaisuja, kuten Cisco DNA:ta.Lisäksi tiimillämme on laaja kokemus Cisco DNA Centerin integroinnista kolmannen osapuolen järjestelmiin.

Katso lisää

 

Maailmassa, jossa teknologiat kehittyvät nopeasti, jokainen yritys - yritys - tarvitsee kumppanin, johon luottaa ja luottaa verkkoinfrastruktuurinsa sujuvaan ja turvalliseen toimintaan.

Katso lisää

Tiimimme

Koulutusvalikoimaamme kuuluu laaja valikoima IT-koulutusta IP-palveluntarjoajilta, mukaan lukien Cisco, Extreme Networks, Fortinet, Microsoft, muutamia mainitakseni, EMEA-alueella.

Katso lisää

CAIP – Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

Ota yhteyttä

Voit olla meihin yhteydessä ja tiedustella koulutuksistamme täydentämällä yhteystietosi ja koulutuksen nimen oheen.

Tietosuojalauseke ja yksityisyys

Suostun vastaanottamaan sähköpostiviestejä ja/tai puheluita Insoft Services Oy: n tuotteista ja palveluista.
Hyväksyn, että tietojani kerätään ja käsitellään Insoft Servicesin tietosuojakäytännössä kuvatulla tavalla.

Close

CAIP – Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110

VARAA NYT
CAIP – Certified Artificial Intelligence (AI) Practitioner: Exam AIP-110
Kesto
5 päivää
Toimitus
(Online ja paikan päällä)
Hinta
Hinta pyydettäessä

Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services.

This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

  • Specify a general approach to solve a given business problem that uses applied AI and ML.
  • Collect and refine a dataset to prepare it for training and testing.
  • Train and tune a machine learning model.
  • Finalize a machine learning model and present the results to the appropriate audience.
  • Build linear regression models.
  • Build classification models.
  • Build clustering models.
  • Build decision trees and random forests.
  • Build support-vector machines (SVMs).
  • Build artificial neural networks (ANNs).
  • Promote data privacy and ethical practices within AI and ML projects.

 

Lesson 1: Solving Business Problems Using AI and ML

  • Topic A: Identify AI and ML Solutions for Business Problems
  • Topic C: Formulate a Machine Learning Problem
  • Topic D: Select Appropriate Tools

Lesson 2: Collecting and Refining the Dataset

  • Topic A: Collect the Dataset
  • Topic B: Analyze the Dataset to Gain Insights
  • Topic C: Use Visualizations to Analyze Data
  • Topic D: Prepare Data

Lesson 3: Setting Up and Training a Model

  • Topic A: Set Up a Machine Learning Model
  • Topic B: Train the Model

Lesson 4: Finalizing a Model

  • Topic A: Translate Results into Business Actions
  • Topic B: Incorporate a Model into a Long-Term Business Solution

Lesson 5: Building Linear Regression Models

  • Topic A: Build a Regression Model Using Linear Algebra
  • Topic B: Build a Regularized Regression Model Using Linear Algebra
  • Topic C: Build an Iterative Linear Regression Model

Lesson 6: Building Classification Models

  • Topic A: Train Binary Classification Models
  • Topic B: Train Multi-Class Classification Models
  • Topic C: Evaluate Classification Models
  • Topic D: Tune Classification Models

Lesson 7: Building Clustering Models

  • Topic A: Build k-Means Clustering Models
  • Topic B: Build Hierarchical Clustering Models

Lesson 8: Building Advanced Models

  • Topic A: Build Decision Tree Models
  • Topic B: Build Random Forest Models

Lesson 9: Building Support-Vector Machines

  • Topic A: Build SVM Models for Classification
  • Topic B: Build SVM Models for Regression

Lesson 10: Building Artificial Neural Networks

  • Topic A: Build Multi-Layer Perceptrons (MLP)
  • Topic B: Build Convolutional Neural Networks (CNN)

Lesson 11: Promoting Data Privacy and Ethical Practices

  • Topic A: Protect Data Privacy
  • Topic B: Promote Ethical Practices
  • Topic C: Establish Data Privacy and Ethics Policies

 

Appendix A: Mapping Course Content to CertNexusŽ Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

This course is also designed to assist students in preparing for the CertNexusÂŽ Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

  • Database Design: A Modern Approach
  • PythonÂŽ Programming: Introduction
  • PythonÂŽ Programming: Advanced

Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services.

This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.

  • Specify a general approach to solve a given business problem that uses applied AI and ML.
  • Collect and refine a dataset to prepare it for training and testing.
  • Train and tune a machine learning model.
  • Finalize a machine learning model and present the results to the appropriate audience.
  • Build linear regression models.
  • Build classification models.
  • Build clustering models.
  • Build decision trees and random forests.
  • Build support-vector machines (SVMs).
  • Build artificial neural networks (ANNs).
  • Promote data privacy and ethical practices within AI and ML projects.

 

Lesson 1: Solving Business Problems Using AI and ML

  • Topic A: Identify AI and ML Solutions for Business Problems
  • Topic C: Formulate a Machine Learning Problem
  • Topic D: Select Appropriate Tools

Lesson 2: Collecting and Refining the Dataset

  • Topic A: Collect the Dataset
  • Topic B: Analyze the Dataset to Gain Insights
  • Topic C: Use Visualizations to Analyze Data
  • Topic D: Prepare Data

Lesson 3: Setting Up and Training a Model

  • Topic A: Set Up a Machine Learning Model
  • Topic B: Train the Model

Lesson 4: Finalizing a Model

  • Topic A: Translate Results into Business Actions
  • Topic B: Incorporate a Model into a Long-Term Business Solution

Lesson 5: Building Linear Regression Models

  • Topic A: Build a Regression Model Using Linear Algebra
  • Topic B: Build a Regularized Regression Model Using Linear Algebra
  • Topic C: Build an Iterative Linear Regression Model

Lesson 6: Building Classification Models

  • Topic A: Train Binary Classification Models
  • Topic B: Train Multi-Class Classification Models
  • Topic C: Evaluate Classification Models
  • Topic D: Tune Classification Models

Lesson 7: Building Clustering Models

  • Topic A: Build k-Means Clustering Models
  • Topic B: Build Hierarchical Clustering Models

Lesson 8: Building Advanced Models

  • Topic A: Build Decision Tree Models
  • Topic B: Build Random Forest Models

Lesson 9: Building Support-Vector Machines

  • Topic A: Build SVM Models for Classification
  • Topic B: Build SVM Models for Regression

Lesson 10: Building Artificial Neural Networks

  • Topic A: Build Multi-Layer Perceptrons (MLP)
  • Topic B: Build Convolutional Neural Networks (CNN)

Lesson 11: Promoting Data Privacy and Ethical Practices

  • Topic A: Protect Data Privacy
  • Topic B: Promote Ethical Practices
  • Topic C: Establish Data Privacy and Ethics Policies

 

Appendix A: Mapping Course Content to CertNexusŽ Certified Artificial Intelligence (AI) Practitioner (Exam AIP-100)

The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.

A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

This course is also designed to assist students in preparing for the CertNexusÂŽ Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing.

You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course. You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++. You can obtain this level of skills and knowledge by taking the following Logical Operations or comparable course:

  • Database Design: A Modern Approach
  • PythonÂŽ Programming: Introduction
  • PythonÂŽ Programming: Advanced